Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\mathbf{a} *}$ Henning Hopf ${ }^{\text {b }}$ and Martin Kreutzer ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:

jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.138$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(Dicyanomethylene)-1,5-diphenylpenta-1,4-diyne

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{2}$, displays no imposed symmetry, but is largely planar [one phenyl ring is twisted by $10.4(1)^{\circ}$ out of the plane of the rest of the molecule]. The central $\mathrm{C}=\mathrm{C}$ bond length is 1.371 (3) \AA. The molecules are linked by a weak hydrogen bond of the form $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$.

Comment

Cross-conjugated enediynes are attracting increasing attention, since they can be used for the preparation of extended π-systems with novel electronic properties (Zhao et al., 2002). We are interested in the synthesis of derivatives of 1,1diethynylethene that bear polarizing functional groups (Hopf et al., 1991). As a reference compound, we prepared the title compound, (I), by the condensation of 1,5-diphenylpenta-1,4-diyn-4-one with malonitrile in acetic acid/ethanol in the presence of β-alanine as catalyst (Kreutzer, 1993); we report here its crystal structure.

(I)

The molecule (Fig. 1) displays no imposed crystallographic symmetry. It is approximately planar; a closer analysis shows that the ring C9-14 is rotated by $10.4(1)^{\circ}$ from the rest of the molecule (mean deviations $0.004 / 0.033 \AA$, respectively, for these two parts). The molecular dimensions may be regarded as normal; the central double bond $\mathrm{C} 3=\mathrm{C} 6$ has a length of 1.371 (3) \AA, and the angles subtended by each pair of substituents at this bond are slightly less than the ideal 120° [118.6 (2) ${ }^{\circ}$ for the phenylethynyl and 117.4 (2) ${ }^{\circ}$ for the cyano groups]. These values may be compared with the values of 1.378 (3)/1.373(3) \AA and 116.8 (1)/118.2(2) ${ }^{\circ}$ observed in two independent centrosymmetric molecules of tetrakis(phenylethynyl)ethene (Hopf et al., 1991).

The molecules are connected by a weak $\mathrm{C} 19-\mathrm{H} 19 \ldots \mathrm{~N} 1$ hydrogen bond by the 2_{1} operator parallel to the b axis, forming a flattened herring-bone pattern (Fig. 2).

Received 5 February 2002
Accepted 6 February 2002
Online 22 February 2002

Figure 1
The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.

Experimental

Crystals of (I) were grown by diffusion of pentane into a solution in chloroform.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{2}$
$M_{r}=278.30$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=12.138$ (4) A
$b=15.279$ (4) \AA
$c=8.763$ (3) A
$\beta=107.24(3)^{\circ}$
$V=1552.1(8) \AA^{3}$
$Z=4$

Data collection

Nicolet R3 diffractometer
ω scans
Absorption correction: none
2909 measured reflections
2722 independent reflections
1498 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.138$
$S=0.90$
2722 reflections
199 parameters
$D_{x}=1.191 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=10-12.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=178$ (2) K
Prism, yellow
$0.70 \times 0.20 \times 0.15 \mathrm{~mm}$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-13 \rightarrow 14$
$k=-18 \rightarrow 0$
$l=-10 \rightarrow 0$
3 standard reflections every 147 reflections intensity decay: none

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.198(3)$	$\mathrm{C} 5-\mathrm{C} 15$	$1.429(3)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.426(3)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.425(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.424(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.433(3)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.371(3)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.145(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.419(3)$	$\mathrm{C} 8-\mathrm{N} 2$	$1.152(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.199(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	$179.4(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 15$	$177.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.8(3)$	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 8$	$121.53(19)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 4$	$120.44(19)$	$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$121.1(2)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 2$	$120.98(19)$	$\mathrm{C} 8-\mathrm{C} 6-\mathrm{C} 7$	$117.4(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.6(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$179.1(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$179.0(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 6$	$179.5(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 8$	$-1.4(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$-1.8(3)$

Figure 2
Packing diagram of the title compound with view direction slightly rotated from the a axis. Hydrogen bonds are indicated by dashed lines. Radii are arbitrary.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.61	$3.436(3)$	145

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
H atoms were included using a riding model, starting from idealized positions.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A . Weinkauf for technical assistance.

References

Hopf, H., Kreutzer, M. \& Jones, P. G. (1991). Angew. Chem. Int. Ed. Engl. 30, 1127-1128.
Kreutzer, M. (1993). PhD thesis, Technical University of Braunschweig, Germany.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Zhao, Y., Campbell, K. \& Tykwinski, R. R. (2002). J. Org. Chem. 67, 336-344, and references therein.

